Sequence Listing was accepted. If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free). Reviewer: Durreshwar Anjum Timestamp: [year=2009; month=9; day=23; hr=14; min=11; sec=26; ms=440;]

Validated By CRFValidator v 1.0.3

	Application N	o: 10554387	Ve	ersion No:	3.0
		Input Set:			
		Output Set:			
		Started: Finished:	2009-09-22 13		
			2009-09-22 13		• · -
		Elapsed: Total Warnings:	0 hr(s) 0 min	(s) 1 sec(s) 347 ms
		Total Errors:	11 0		
	No. of	f SeqIDs Defined:	14		
		tual SeqID Count:	14		
Erro	or code	Error Description			
W	213	Artificial or Unk	nown found in •	<213> in SE	EQ ID (1)
W	213	Artificial or Unk	nown found in •	<213> in SE	CQ ID (2)
W	213	Artificial or Unk	nown found in •	<213> in SE	EQ ID (3)
W	213	Artificial or Unk	nown found in •	<213> in SE	CQ ID (4)
W	213	Artificial or Unk	nown found in •	<213> in SE	CQ ID (5)
W	213	Artificial or Unk	nown found in •	<213> in SE	CQ ID (6)
W	213	Artificial or Unk	nown found in •	<213> in SE	EQ ID (10)
W	213	Artificial or Unk	nown found in •	<213> in SE	CQ ID (11)
W	213	Artificial or Unk	nown found in •	<213> in SE	CQ ID (12)
W	213	Artificial or Unk	nown found in •	<213> in SE	CQ ID (13)
W	213	Artificial or Unk	nown found in •	<213> in SE	CQ ID (14)

<110> Protalix Ltd. Shaaltiel, Yoseph Baum, Gideon Hashmueli, Sharon Lewkowicz, Ayala Bartfeld, Daniel <120> PRODUCTION OF HIGH MANNOSE PROTEINS IN PLANT CULTURE <130> 30570 <140> 10554387 <141> 2005-10-25 <150> IL 155588 <151> 2003-04-27 <150> PCT/IL2004/000181 <151> 2004-02-24 <160> 14 <170> PatentIn version 3.5 <210> 1 <211> 22 <212> PRT <213> Artificial sequence <220> <223> ER signal peptide <400> 1 Met Lys Thr Asn Leu Phe Leu Phe Leu Ile Phe Ser Leu Leu Leu Ser 1 5 10 15 Leu Ser Ser Ala Glu Phe 20 <210> 2 <211> 7 <212> PRT <213> Artificial sequence <220> <223> Vacuolar targeting signal from Tobacco chitinase A <400> 2 Asp Leu Leu Val Asp Thr Met 1 5

<210>	
<211>	21
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Single strand DNA oligonucleotide
(10.0)	
<400>	
cagaat	tege eegeceetge a
<210>	4
<210>	
<212>	
<213>	Artificial sequence
<220>	
	Single strand DNA oligonucleotide
<400>	4
ctcaga	tctt ggcgatgcca ca
<210>	5
<211>	19
<212>	
<213>	Artificial sequence
<220>	
	Single strand DNA oligonucleotide
~223/	Single strand DMA origonacteotide
<400>	5
ctcaga	agac cagagggct
<210>	
	17
<212>	17 DNA
	17
<212> <213>	17 DNA
<212> <213> <220>	17 DNA Artificial sequence
<212> <213> <220>	17 DNA Artificial sequence
<212>	17 DNA Artificial sequence Single strand DNA oligonucleotide
<212> <213> <220> <223> <400>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6
<212> <213> <220> <223> <400>	17 DNA Artificial sequence Single strand DNA oligonucleotide
<212> <213> <220> <223> <400>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6
<212> <213> <220> <223> <400> caaagc	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc
<212> <213> <220> <223> <400> caaagc <210>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc 7
<212> <213> <220> <223> <400> caaagc <210> <211>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc 7 1491
<212> <213> <220> <223> <400> caaagc <210> <211> <212>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc 7 1491
<212> <213> <220> <223> <400> caaagc <210> <211> <212>	17 DNA Artificial sequence Single strand DNA oligonucleotide 6 ggcc atcgtgc 7 1491 DNA Homo sapiens

acatactgtg acteetttga ecceedgace ttteetgeee ttggtaeett eageegetat 120 180 gagagtacac gcagtgggcg acggatggag ctgagtatgg ggcccatcca ggctaatcac 240 acgggcacag geetgetaet gaeeetgeag eeagaacaga agtteeagaa agtgaaggga 300 tttggagggg ccatgacaga tgctgctgct ctcaacatcc ttgccctgtc acccctgcc caaaatttgc tacttaaatc gtacttctct gaagaaggaa tcggatataa catcatccgg 360 gtacccatgg ccagctgtga cttctccatc cgcacctaca cctatgcaga cacccctgat 420 480 gatttccagt tgcacaactt cagectecca gaggaagata ccaageteaa gataeceetg 540 attcaccgag ccctgcagtt ggcccagcgt cccgtttcac tccttgccag cccctggaca 600 tcacccactt ggctcaagac caatggagcg gtgaatggga agggggtcact caagggacag cccggagaca tctaccacca gacctgggcc agatactttg tgaagttcct ggatgcctat 660 720 gctgagcaca agttacagtt ctgggcagtg acagctgaaa atgagcette tgctgggetg 780 ttgagtggat accectteea gtgeetggge tteaceeetg aaeateageg agaetteatt gcccgtgacc taggtcctac cctcgccaac agtactcacc acaatgtccg cctactcatg 840 ctggatgacc aacgcttgct gctgccccac tgggcaaagg tggtactgac agacccagaa 900 gcagctaaat atgttcatgg cattgctgta cattggtacc tggactttct ggctccagcc 960 1020 aaagccaccc taggggagac acaccgcctg ttccccaaca ccatgctctt tgcctcagag 1080 gcctgtgtgg gctccaagtt ctgggagcag agtgtgcggc taggctcctg ggatcgaggg atgcagtaca gccacagcat catcacgaac ctcctgtacc atgtggtcgg ctggaccgac 1140 tggaaccttg ccctgaaccc cgaaggagga cccaattggg tgcgtaactt tgtcgacagt 1200 1260 cccatcattg tagacatcac caaggacacg ttttacaaac agcccatgtt ctaccacctt ggccacttca gcaagttcat tcctgagggc tcccagagag tggggctggt tgccagtcag 1320 1380 aagaacgacc tggacgcagt ggcactgatg catcccgatg gctctgctgt tgtggtcgtg ctaaaccgct cctctaagga tgtgcctctt accatcaagg atcctgctgt gggcttcctg 1440 1491 gagacaatet cacetggeta etceatteae acetaeetgt ggeategeea g

<210> 8 <211> 497 <212> PRT <213> Homo sapiens

<400> 8

Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys

1	5	10	15
Val Cys Asn Ala	Thr Tyr Cys Asp	Ser Phe Asp Pro Pro	Thr Phe Pro
20		25	30
Ala Leu Gly Thr	Phe Ser Arg Tyr	Glu Ser Thr Arg Ser	Gly Arg Arg
35	40	45	
Met Glu Leu Ser	Met Gly Pro Ile	Gln Ala Asn His Thr	Gly Thr Gly
50	55	60	
Leu Leu Leu Thr	Leu Gln Pro Glu	Gln Lys Phe Gln Lys	Val Lys Gly
65	70	75	80
Phe Gly Gly Ala	Met Thr Asp Ala	Ala Ala Leu Asn Ile	Leu Ala Leu
	85	90	95
Ser Pro Pro Ala	Gln Asn Leu Leu	Leu Lys Ser Tyr Phe	Ser Glu Glu
100		105	110
Gly Ile Gly Tyr	Asn Ile Ile Arg	Val Pro Met Ala Ser	Cys Asp Phe
115	120	125	
Ser Ile Arg Thr	Tyr Thr Tyr Ala	Asp Thr Pro Asp Asp	Phe Gln Leu
130	135	140	
His Asn Phe Ser	Leu Pro Glu Glu	Asp Thr Lys Leu Lys	Ile Pro Leu
145	150	155	160
Ile His Arg Ala	Leu Gln Leu Ala	Gln Arg Pro Val Ser	Leu Leu Ala
	165	170	175
Ser Pro Trp Thr	Ser Pro Thr Trp	Leu Lys Thr Asn Gly	Ala Val Asn
180		185	190
Gly Lys Gly Ser	Leu Lys Gly Gln	Pro Gly Asp Ile Tyr	His Gln Thr
195	200	205	
Trp Ala Arg Tyr	Phe Val Lys Phe	Leu Asp Ala Tyr Ala	Glu His Lys
210	215	220	
Leu Gln Phe Trp	Ala Val Thr Ala	Glu Asn Glu Pro Ser	Ala Gly Leu

Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu225230235240

Leu Ser	Gly Ty	r Pro 245	Phe	Gln	Суз	Leu	Gly 250	Phe	Thr	Pro	Glu	His 255	Gln
Arg Asp	Phe Il 26		Arg	Asp	Leu	Gly 265	Pro	Thr	Leu	Ala	Asn 270	Ser	Thr
His His	Asn Va 275	l Arg	Leu	Leu	Met 280	Leu	Asp	Asp	Gln	Arg 285	Leu	Leu	Leu
Pro His 290	Trp Al	a Lys	Val	Val 295	Leu	Thr	Asp	Pro	Glu 300	Ala	Ala	Lys	Tyr
Val His 305	Gly Il	≥ Ala	Val 310	His	Trp	Tyr	Leu	Asp 315	Phe	Leu	Ala	Pro	Ala 320
Lys Ala	Thr Le	ı Gly 325	Glu	Thr	His	Arg	Leu 330	Phe	Pro	Asn	Thr	Met 335	Leu
Phe Ala	34)	_		_	345	_		_		350		
Arg Leu	355		-	-	360			-		365			
Thr Asn 370				375					380				
Leu Asn 385			390					395				-	400
Pro Ile Phe Tyr		405					410					415	
Arg Val	42)				425					430		
Leu Met	435				440			-		445			
150 Leu Met	IITS LT	r vph	сту	455	лıd	var	var	var	460	лец	ווכח	ΑĽΥ	261

Ser Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu 465 470 475 480	
Glu Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp His Arg 485 490 495	
Gln	
<210> 9 <211> 338 <212> DNA <213> Cauliflower mosaic virus	
<400> 9	
ttttcacaaa gggtaatatc gggaaacctc ctcggattcc attgcccagc tatctgtcac	60
ttcatcgaaa ggacagtaga aaaggaaggt ggctcctaca aatgccatca ttgcgataaa	120
ggaaaggeta tegtteaaga tgeetetaee gaeagtggte eeaaagatgg acceecaeee	180
acgaggaaca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtggattga	240
tgtgatatet ceaetgaegt aagggatgae geaeaateee actateette geaagaeeet	300
tcctctatat aaggaagttc atttcatttg gagaggac	338
<210> 10 <211> 66 <212> DNA <213> Artificial sequence	
<220> <223> Nucleic acid sequence encoding the ER signal peptide	
<400> 10	
atgaagacta atctttttct ctttctcatc ttttcacttc tcctatcatt atcctcggcc	60
gaatte	66
<210> 11	
<211> 21	
<212> DNA <213> Artificial sequence	
<220>	
<pre><223> Nucleic acid sequence encoding the vacuolar targeting sequence</pre>	
<400> 11	
gatcttttag tcgatactat g	21

<210> 12 <211> 167 <212> DNA <213> Artificial sequence <220> <223> Nucleic acid sequence of the Agrobacterium tumefaciens terminator <220> <221> misc_feature <222> (162)..(162) <223> n is a, c, g, or t <400> 12 taatttcatg atctgttttg ttgtattccc ttgcaatgca gggcctaggg ctatgaataa 60 agttaatgtg tgaatgtgtg aatgtgtgat tgtgacctga agggatcacg actataatcg 120 tttataataa acaaagactt tgtcccaaaa acccccccc cngcaga 167 <210> 13 <211> 2186 <212> DNA <213> Artificial sequence <220> <223> nucleic acid sequence encoding high mannose human glucocerebrosidase (GCD) <220> <221> misc_feature <222> (2181)..(2181) <223> n is a, c, g, or t <400> 13 ttttcacaaa gggtaatatc gggaaacctc ctcggattcc attgcccagc tatctgtcac 60 ttcatcgaaa ggacagtaga aaaggaaggt ggctcctaca aatgccatca ttgcgataaa 120 ggaaaggeta tegtteaaga tgeetetaee gaeagtggte eeaaagatgg acceecaeee 180 acgaggaaca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca agtggattga 240 tgtgatatet ceactgacgt aagggatgac geacaateee actateette geaagaeeet 300 360 teetetatat aaggaagtte attteatttg gagaggaeag gettettgag ateetteaae 420 aattaccaac aacaacaaac aacaaacaac attacaatta ctatttacaa ttacagtcga gggatccaag gagatataac aatgaagact aatctttttc tctttctcat cttttcactt 480 540 ctcctatcat tatcctcggc cgaattcgcc cgcccctgca tccctaaaag cttcggctac

ageteggtgg tgtgtgtetg caatgeeaca taetgtgaet eetttgaeee eeegaeettt 600 660 cctgcccttg gtaccttcag ccgctatgag agtacacgca gtgggcgacg gatggagctg 720 agtatggggc ccatccaggc taatcacacg ggcacaggcc tgctactgac cctgcagcca 780 gaacagaagt tccagaaagt gaagggattt ggaggggcca tgacagatgc tgctgctctc 840 aacateettg eeetgteace eeetgeecaa aatttgetae ttaaategta ettetetgaa gaaggaatcg gatataacat catccgggta cccatggcca gctgtgactt ctccatccgc 900 acctacacct atgcagacac ccctgatgat ttccagttgc acaacttcag cctcccagag 960 1020 gaagatacca agetcaagat acceetgatt caeegageee tgeagttgge ceagegteee gtttcactcc ttgccagccc ctggacatca cccacttggc tcaagaccaa tggagcggtg 1080 aatgggaagg ggtcactcaa gggacagccc ggagacatct accaccagac ctgggccaga 1140 tactttgtga agttcctgga tgcctatgct gagcacaagt tacagttctg ggcagtgaca 1200 1260 getgaaaatg ageettetge tgggetgttg agtggataee eetteeagtg eetgggette accectgaac atcagegaga etteattgee egtgaeetag gteetaeeet egecaaeagt 1320 actcaccaca atgtccgcct actcatgctg gatgaccaac gcttgctgct gccccactgg 1380 gcaaaggtgg tactgacaga cccagaagca gctaaatatg ttcatggcat tgctgtacat 1440 1500 tggtacctgg actttctggc tccagccaaa gccaccctag gggagacaca ccgcctgttc 1560 cccaacacca tgctctttgc ctcagaggcc tgtgtgggct ccaagttctg ggagcagagt 1620 gtgcggctag gctcctggga tcgagggatg cagtacagcc acagcatcat cacgaacctc ctgtaccatg tggtcggctg gaccgactgg aaccttgccc tgaaccccga aggaggaccc 1680 1740 aattgggtgc gtaactttgt cgacagtccc atcattgtag acatcaccaa ggacacgttt tacaaacagc ccatgttcta ccaccttggc cacttcagca agttcattcc tgagggctcc 1800 1860 cagagagtgg ggctggttgc cagtcagaag aacgacctgg acgcagtggc actgatgcat cccgatggct ctgctgttgt ggtcgtgcta aaccgctcct ctaaggatgt gcctcttacc 1920 1980 atcaaggatc ctgctgtggg cttcctggag acaatctcac ctggctactc cattcacacc tacctgtggc atcgccaaga tcttttagtc gatactatgt aatttcatga tctgttttgt 2040 tgtattccct tgcaatgcag ggcctagggc tatgaataaa gttaatgtgt gaatgtgtga 2100 atgtgtgatt gtgacctgaa gggatcacga ctataatcgt ttataataaa caaagacttt 2160 gtcccaaaaa ccccccccc ngcaga 2186

<210> 14 <211> 526 <212> PRT <213> Artificial sequence	
<220> <223> High mannose human glucocerebrosidase (GCD)	
<400> 14	
Met Lys Thr Asn Leu Phe Leu Phe Leu Ile Phe Ser Leu Leu Ser 1 5 10 15	
Leu Ser Ser Ala Glu Phe Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly 20 25 30	
Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe 35 40 45	
Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser 50 55 60	
Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala 65 70 75 80	
Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys 85 90 95	
Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala 100 105 110	
Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Lys 115 120 125	
Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro 130 135 140	I
Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr 145 150 155 160	
Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp Thr 165 170 175	
Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln Arg 180 185 190	

Pro Va	l Ser 195		Leu	Ala	Ser	Pro 200	Trp	Thr	Ser	Pro	Thr 205	Trp	Leu	Lys
Thr As 21	_	Ala	Val	Asn	Gly 215	Lys	Gly	Ser	Leu	Lys 220	Gly	Gln	Pro	Gly
Asp Il 225	e Tyr	His	Gln	Thr 230	Trp	Ala	Arg	Tyr	Phe 235	Val	Lys	Phe	Leu	Asp 240
Ala Ty	r Ala	Glu	His 245	Lys	Leu	Gln	Phe	Trp 250	Ala	Val	Thr	Ala	Glu 255	Asn
Glu Pr	o Ser	Ala 260	Gly	Leu	Leu	Ser	Gly 265	Tyr	Pro	Phe	Gln	Суз 270	Leu	Gly
Phe Th	r Pro 275		His	Gln	Arg	Asp 280	Phe	Ile	Ala	Arg	Asp 285	Leu	Gly	Pro
Thr Le 29	0				295				-	300				_
Asp Gl 305	-			310					315					320
Pro Gl			325	-			_	330				-	335	
Asp Ph Phe Pr		340					345		-			350	-	
Phe Tr	355					360				-	365	-		-
Tyr Se	0				375		_			380	-	-		
385 Thr As				390					395				_	400
AD	ь ттЫ	-1011	405		Lu			410	<u> </u>	υ±y	0		415	, at

Arg Asn Phe	Val Asp S 420	er Pro Ile	Ile Val . 425	Asp Ile	Thr Lys 430	Asp Thr
Phe Tyr Lys 435	Gln Pro M	et Phe Tyr 440	His Leu (-	Phe Ser 445	Lys Phe
Ile Pro Glu 450	Gly Ser G	ln Arg Val 455	Gly Leu '	Val Ala 460	Ser Gln	Lys Asn
Asp Leu Asp 465		la Leu Met 70		Asp Gly 475	Ser Ala	Val Val 480
Val Val Leu	Asn Arg S 485	er Ser Lys	Asp Val 1 490	Pro Leu	Thr Ile	Lys Asp 495
Pro Ala Val	Gly Phe L 500	eu Glu Thr	Ile Ser 1 505	Pro Gly	Tyr Ser 510	Ile His
Thr Tyr Leu 515	Trp His A	rg Gln Asp 520	Leu Leu '	=	Thr Met 525	